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Abstract. In fire emission models, the spatial resolution of both the modelling framework and the satellite data used to 

quantify burned area can have considerable impact on emission estimates. Consideration of this sensitivity is especially 

important in areas with heterogeneous land cover and fire regimes, and when constraining model output with field 

measurements. We developed a global fire emissions model with a spatial resolution of 500 m using MODerate resolution 15 

Imaging Spectroradiometer (MODIS) data. To accommodate this spatial resolution, our model is based on a simplified 

version of the Global Fire Emissions Database (GFED) modelling framework. Tree mortality as a result of fire, i.e. fire-

related forest loss, was modelled based on the overlap between 30-m forest loss data and MODIS burned area and active fire 

detections. Using this new 500-m model, we calculated global average carbon emissions from fire of 2.1 ± 0.2 (±1s 

interannual variability; IAV) Pg C yr–1 during 2002–2019. Fire-related forest loss accounted for 2.5 ± 0.9% (uncertainty 20 

range = 1.9–3.2%) of global burned area and 25 ± 6% (uncertainty range = 18–32%) of emissions, indicating that fuel 

consumption in forest fires is an order of magnitude higher than the global average. Emissions from the combustion of soil 

organic carbon in the boreal region and tropical peatlands accounted for 14 ± 4% of global emissions. Our global fire 

emissions estimate was higher than the 1.5 Pg C yr–1 from GFED4 and similar to 2.1 Pg C yr–1 from GFED4s. Even though 

GFED4s included more burned area by accounting for small fires undetected by the MODIS burned area mapping algorithm, 25 

our emissions were similar to GFED4s due to higher average fuel consumption. The global difference in fuel consumption 

could mainly be explained by higher SOC emissions from the boreal region as constrained by additional measurements. The 

higher resolution of the 500-m model also contributed to the difference by improving the simulation of landscape 

heterogeneity and reducing the scale mismatch in comparing field measurements to model grid cell averages during model 

calibration. Furthermore, the fire-related forest loss algorithm introduced in our model led to more accurate and widespread 30 

estimation of high-fuel consumption burned area. Recent advances in burned area detection at resolutions of 30 m and finer 

show a substantial amount of burned area that remains undetected with 500-m sensors, suggesting that global carbon 
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emissions from fire are likely higher than our 500-m estimates. The ability to model fire emissions at 500-m resolution 

provides a framework for further improvements with the development of new satellite-based estimates of fuels, burned area, 

and fire behaviour, for use in the next generation of GFED. 35 

1 Introduction 

Fires are an essential component of the Earth System, shaping ecosystems and emitting substantial amounts of greenhouse 

gases and aerosols into the atmosphere (Masson-Delmotte et al., 2021; McLauchlan et al., 2020). Fires therefore have a 

major influence on global climate and carbon cycling. Global fire emissions have been studied intensively since the 1980s 

(Seiler and Crutzen, 1980), initially by using biome-specific parameterizations in combination with static vegetation maps, 40 

and later using remote sensing data in combination with dynamic modelling. Models used for estimating contemporary 

global fire emissions are typically based on either a biogeochemical model for estimation of fuel load and fuel consumption 

in combination with satellite-based burned area to calculate emissions (e.g. van der Werf et al., 2017), or remotely-sensed 

fire radiative power (FRP) in combination with parametric relationships that convert FRP to fire radiative energy (FRE) and 

emissions (e.g. Kaiser et al., 2012; Mota and Wooster, 2018).  The biogeochemical modelling approach relies heavily on 45 

remote sensing data of vegetation cover, vegetation productivity, and moisture conditions, whereas the FRP approach 

bypasses most of these dependencies by directly deriving emissions based on active fire detections from thermal anomalies. 

However, active fire detections are limited to actively burning fires during cloud-free satellite overpasses, whereas burned 

area detections can be derived from a set of images before and after the fire and give a more accurate estimate of the fire-

affected area. Active fire detections can also be used in biogeochemical models to estimate the burned area from small fires 50 

undetected by burned area detection algorithms (Randerson et al., 2012). The MODerate resolution Imaging 

Spectroradiometer (MODIS) sensors on-board the Terra and Aqua satellites, launched in 1999 and 2002, respectively, and 

with a spatial resolution between 250-1000 m dependent on the reflectance band, have been among the main sources of data 

used by global fire emission models for the last 20 years. The Global Fire Emissions Database (GFED) estimates fire 

emissions based on a biogeochemical model that relies on various MODIS-derived datasets including burned area (Giglio et 55 

al., 2018; van der Werf et al., 2017). GFED has provided a benchmark for evaluating fire emissions estimates from 

prognostic models and has been used widely within different scientific communities, for example the IPCC reports, the 

Global Carbon Project, and as a validation tool for other estimation methods (Friedlingstein et al., 2020; Hantson et al., 

2016; Masson-Delmotte et al., 2021). 

 60 

Current estimates of global fire emissions are around 2 Pg C yr–1 (Kaiser et al., 2012; van der Werf et al., 2017). In contrast 

to emissions from fossil fuel burning, only a portion of global fire emissions contribute to net emissions, and thus the build-

up of CO2 in the Earth’s atmosphere. In many ecosystems where the fire regime is not rapidly changing, carbon losses from 

fire emissions are balanced by carbon accumulation associated with vegetation recovery and post-fire succession. Fire-
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affected area and emissions from fire can vary substantially between regions and biomes, as can their drivers and impacts 65 

(Cattau et al., 2020; Kelley et al., 2019). About 70% of global burned area occurs in Africa, primarily due to frequently 

burning surface fires in savannas (Giglio et al., 2018). As a result of the relatively low fuel consumption of these fires (the 

amount of carbon emitted per unit area burned), they account for only about half of global fire carbon emissions (van der 

Werf et al., 2017) and many of these emissions are sequestered by regrowth within a year. Fuel consumption rates of roughly 

an order of magnitude larger are observed in fires in forests that involve the burning of tree biomass and larger amounts of 70 

accumulated surface fuels (Krylov et al., 2014; van Wees et al., 2021). In forest ecosystems, regrowth is slower and lost 

carbon takes longer to accumulate. Emissions are especially impactful in the case of deforestation, as regrowth is largely or 

fully inhibited. In the tropics, slash-and-burn practices are used to convert land from tropical forest to agriculture, which 

involves a deliberate set of management efforts to harvest, aggregate, and dry woody fuels that increases fuel consumption 

(Carvalho et al., 1995; Kauffman et al., 1995). In tropical peatlands and boreal forests, fire can also burn into carbon-rich soil 75 

organic layers, leading to even higher fuel consumption rates and the release of carbon that is not reaccumulated for 

hundreds or thousands of years (Page and Hooijer, 2016; Walker et al., 2019). 

 

Global net fire emissions are estimated to be around 0.4 Pg C yr–1, primarily from deforestation and peat fires (van der Werf 

et al., 2017). Net fire emissions are a major contributor to total land use and land cover change (LULCC) emissions, which 80 

are estimated to be around 1.6 ± 0.7 (±1s uncertainty) Pg C yr–1 during 2010–2019 (Friedlingstein et al., 2020). In addition 

to fire, LULCC emissions are generated from logging, forest degradation, and shifting agriculture. Although fossil fuel 

emissions are much larger (9.6 ± 0.5 Pg C yr–1; ±1s uncertainty; Friedlingstein et al., 2020), LULCC emissions introduce 

considerable interannual and decadal variability and uncertainty into estimates of the global carbon budget (van Marle et al., 

2022). Fire emissions from deforestation are a particularly large source of direct net emissions with substantial interannual 85 

variability. However, difficulties remain in determining the causal relationship between fire detection and reductions in tree 

cover, both spatially and temporally. Van Wees et al. (2021) estimated that 38% of global forest loss was related to fire. This 

fraction was higher in primary humid tropical forests (41%), illustrating the important role of fire as a disturbance agent in 

tropical forests, both due to deforestation and drought-related fires (Aragão et al., 2018; Brando et al., 2019). These were 

gross fire-related forest loss estimates and thus included both cases of permanent conversion and cases where the disturbance 90 

was followed by regrowth. Regrowth of forest generally occurs after stand-replacing wildfires in temperate and boreal 

forests and shifting agriculture in the tropics. However, even without permanent land cover change fires can lead to net 

emissions due to shortening fire-return intervals as a result of changes in land management and climate change (Walker et 

al., 2019; Wang et al., 2021). Although numerous studies have linked recent record-breaking fire events in boreal, temperate, 

and tropical regions to climate change (Abatzoglou et al., 2019; Canadell et al., 2021; Gutierrez et al., 2022; Williams et al., 95 

2019), the global influence of climate on net emissions remains uncertain. These uncertainties and the extrapolation of 

climate-fire interactions into the future require improved fire emission models. 
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Considerable uncertainties exist in current fire emission estimates (Carter et al., 2020; Liu et al., 2020). For example, GFED 

reports emissions with a substantial estimated uncertainty of ± 50% for continental to global scale-estimates (van der Werf et 100 

al., 2017). However, improvements have been made with respect to burned area detection and fire modelling since the last 

GFED release. Furthermore, numerous field campaigns have been conducted that provide additional data for model 

calibration and validation. One large remaining source of uncertainty is spatial resolution. Fire emission models have 

historically been implemented at a spatial resolution much coarser than the satellite data used to derive burned area and 

vegetation properties. For example, although the model framework of GFED4 (hereafter described as GFED4(s); which 105 

comprises emission estimates from GFED4 without small fires and GFED4s with small fires) draws upon MODIS-derived 

data products with a resolution of 500 m, these data are aggregated by vegetation type to a spatial resolution of 0.25° for 

carbon model calculations. A case study for sub-Saharan Africa by van Wees and van der Werf (2019) showed that this 

spatial aggregation can have a substantial impact on estimated fire emissions. Comparing model simulations at the native 

500-m and at aggregated 0.25° resolution using a modelling framework similar to GFED, they found 24% lower emissions 110 

based on the 500-m resolution model. The difference was mainly explained by a reduction in representation errors for the 

finer resolution model when comparing modelled fuel load and consumption to field measurements. Representation errors 

follow from the scale mismatch between field plots and model grid cell averages (Janjić et al., 2018). The finer model grid 

cell provides a better approximation of the field-measured value, as field plots can be as small as 30 x 30 m. Because field 

measurements play a crucial role in model calibration, both fuel load and consumption estimates are strongly influenced by 115 

spatial resolution. Other mechanisms that contributed to the difference included the impact of spatial aggregation on non-

linearities in the model and the loss of variability in the aggregated representation of biomes (van Wees and van der Werf, 

2019). The benefits of higher-resolution fire emission modelling have yet to be extended to a global scale. 

 

In this paper we present a global fire emissions model with a spatial resolution of 500 m, with the aim of providing an 120 

improved modelling framework for estimating fire emissions at both local and global scales. The model presented in this 

paper builds on an earlier 500-m model case study for sub-Saharan Africa as described in van Wees and van der Werf (2019) 

and with application in Ramo et al. (2021). The main advancements made since the initial case study include: 1) global 

coverage, 2) updated input datasets, including upgrades from MODIS Collection 5 (C5) to MODIS Collection 6 (C6) for 

burned area and vegetation cover and ERA-Interim to ERA5 reanalysis for surface climate, 3) automated calibration of net 125 

primary production (NPP) using the MODIS NPP product, 4) automated calibration of aboveground biomass using reference 

biomass maps, 5) updated field measurement database that allows for the calibration of fuel loads and fuel consumption for 

individual biomass and litter pools at 500-m resolution, and 6) integration of a fire-related forest loss module based on van 

Wees et al. (2021) for modelling tree mortality. 
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2 Methods 130 

For this study we developed a global fire emissions model with a 500-m spatial resolution and a monthly temporal resolution 

for the 2002–2019 time period. The model was derived from the GFED modelling framework, which originates from the 

Carnegie-Ames-Stanford Approach (CASA) biosphere model (Field et al., 1995; Potter et al., 1993). In GFED, the CASA 

model is used to diagnostically model vegetation production and decomposition in order to estimate fuel loads, with heavy 

reliance on remote sensing products of vegetation cover and productivity. Fuel loads are multiplied by satellite-derived 135 

burned area and metrics for combustion completeness (CC) to calculate emissions (Seiler and Crutzen, 1980). To account for 

the increase in spatial resolution from 0.25° to 500 m and the associated computational costs, the original GFED framework 

was simplified by omitting herbivory and grazing processes, for which accurate representations at 500-m resolution do not 

exist, excluding dynamic belowground carbon cycling of soil organic carbon, and using a modified version of the 

heterotrophic respiration scheme. We will first describe the model framework (2.1), with a focus on changes made and 140 

additional modules introduced since the case study described in van Wees and van der Werf (2019). Next, we describe the 

model input datasets (2.2). Finally, we present the model calibration steps and simulation procedure (2.3). 

2.1 Model description 

In the model, carbon input from satellite-based NPP is partitioned between aboveground and belowground biomass pools. 

Biomass mortality, including from disturbance processes such as fire, convert the aboveground biomass to surface litter 145 

pools. Carbon output occurs from microbial decomposition of litter followed by respiration, as well as from fire emissions. 

2.1.1 Biomass production and decomposition 

NPP in g C m–2 is based on the CASA light-use efficiency model and calculated at each 500-m grid cell, 𝑥, and monthly time 

step, 𝑡, as: 

 150 

𝑁𝑃𝑃(𝑥, 𝑡) = 𝑆𝑆𝑅(𝑥, 𝑡) ∙ 0.5 ∙ 𝑓𝑃𝐴𝑅(𝑥, 𝑡) ∙ 𝑇2(𝑥, 𝑡) ∙ 𝑇3(𝑥, 𝑡) ∙ 𝑊(𝑥, 𝑡) ∙ 𝜀678     (1) 

 

Where 𝑆𝑆𝑅 is the net solar radiation at the surface in MJ m–2 from ERA5-land reanalysis, 𝑓𝑃𝐴𝑅 is the fraction of 

photosynthetically active radiation absorbed by vegetation derived from MODIS, 𝑇2, 𝑇3 and 𝑊 are unitless temperature and 

water stress scalars (adopted from Field et al., 1995), and 𝜀678 is the maximum light-use efficiency in g C MJ–1. The factor 155 

0.5 represents the fraction of solar radiation in the photosynthetically active radiation wavelengths (400–700 nm) (Myneni et 

al., 2015). The temperature scalars, 𝑇2 and 𝑇3 , are given by: 

 

𝑇2 = 0.8 + 0.02[°C>2]	𝑇ABC(𝑥) − 0.0005[°C>3]	𝑇ABC(𝑥)3       (2) 

 160 
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𝑇3 = 1.1814 2

2GH
I.JK°LMNOPQRST(U)MNI[°L]MQ(U,T)V

∙ 2

2GH
I.WK°LMNOPMQRST(U)MNI[°L]XQ(U,T)V

     (3) 

 

Where 𝑇 is the 2-meter air temperature in °C from ERA5-land reanalysis and 𝑇ABC  is the mean temperature during the month 

with the maximum 𝑓𝑃𝐴𝑅. The water stress scalar, 𝑊, is a linear function based on the evaporative stress factor, 𝑆, and 

calculated as: 165 

 

𝑊(𝑥, 𝑡) = 0.5 + Y
3
           (4) 

 

Evaporative stress converts potential evaporation into actual evaporation and is based on vegetation optical depth as a proxy 

for vegetation water content and simulations of soil moisture in the root zone from the Global Land Evaporation Amsterdam 170 

Model (GLEAM; Martens et al., 2017; Miralles et al., 2011). The light-use efficiency is halved at maximum water stress 

(𝑆 = 0) and increases linearly towards optimal conditions. Modelled NPP is partitioned between stem, leaf, grass, and root 

biomass pools based on fractional tree cover (FTC) and fractional non-tree vegetation (NTV) data. Tree vegetation is 

represented by the stem, leaf, and root pools, each of which receive tree-allocated NPP in ratios of 0.27, 0.33, and 0.40, 

respectively. These ratios follow from the initial assumption in the original CASA model that each of the biomass pools 175 

receives one-third of NPP, which in van Wees and van der Werf (2019) was combined with a redistribution of 20% of stem 

NPP to the roots for more realistic root biomass turnover rates (van der Werf et al., 2009). Non-tree vegetation, including 

grasses, shrubs and crops, is represented by the grass and roots pools, both receiving half of the non-tree-allocated NPP. 

Biome-dependent turnover rates determine the mortality rate of aboveground biomass conversion to surface litter, 

represented by the fine litter and coarse woody debris (CWD) model pools. Decomposition causes the stepwise degradation 180 

of CWD to fine litter and fine litter to soil organic carbon (SOC). The model does not include a root fine litter pool and root 

mortality feeds directly into the SOC pool. The decomposition rate is dependent on temperature and moisture conditions, 

which are represented in the abiotic scalar, 𝜀Z, defined as: 

 

𝜀Z =
[Q∙[\]
^._

	with	0.1 < 𝜀Z < 1.0,          (5) 185 

 

where 𝜀e  and 𝜀Yf are the temperature and soil moisture scalar, respectively. The temperature scalar is defined as: 

 

𝜀e = 𝑄2^
QMWI[°L]
NI[°L] 	with	𝜀e > 1.0 = 1.0,         (6) 

 190 

where 𝑄2^ is the temperature coefficient. We used a 𝑄2^ value of 1.5, implying a 50% increase for every 10 °C rise in 

temperature, up to a temperature of 30 °C. The soil moisture scalar is defined as: 
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𝜀Yf = Yf(8,C)
^.ij

	with	0.1 < 𝜀Yf < 1.0,         (7) 

 195 

where 𝑆𝑀 is the volumetric soil water content in the 0–7 cm soil depth layer from ERA5-land reanalysis, in units of volume 

fraction. The factor 0.45 increases the dynamics range of 𝜀Yf since 𝑆𝑀 typically has a maximum around 0.45 𝑚m𝑚>m, 

except for some wetland areas (see Section 2.1.3). 

 

Part of the carbon turnover from biomass mortality is caused by fire and forest loss processes. The amount of biomass and 200 

litter exposed to fire is based on burned area detections and additional burned area derived in the fire-related forest loss 

module from overlap between forest loss and active fire detections (see section 2.1.2 below). The portion of the fire-exposed 

vegetation and litter that is combusted by fire and released to the atmosphere, i.e. the combustion completeness (CC), is 

determined by the soil moisture scalar 𝜀Yf  (See Table S3). The portion of the fire-exposed live biomass that is not 

combusted is killed and becomes litter. More specifically, unburned grass and leaves become surface fine litter, stems 205 

become CWD and roots become SOC. Trees are only affected by fire in case of fire-related forest loss, in which case the 

stem and leaf CC values apply. In case of fire-related forest loss in commodity-driven deforestation regions, the CC values 

for the stem, CWD and root pools are increased to range between 40 – 90%, 65 – 95% and 20 – 50% respectively, in order to 

simulate repeated slash burning and tree uprooting. Forest loss without fire (e.g. forestry) causes a reduction in tree cover 

and a portion of the affected stem, leaf, and root pools is converted to surface litter. In this case, only 20% of the stem 210 

biomass lost is converted to CWD, assuming a logging efficiency of 80%. The other 80% is assumed to end up in wood 

products and is not emitted during the simulation period. 

2.1.2 Fire-related forest loss module 

We used a fire-related forest loss module to represent tree mortality from fire. This approach replaces the mortality scalar 

based on FTC used in the Africa case study model (van Wees and van der Werf, 2019) and GFED4(s) (van der Werf et al., 215 

2017). Instead of the mortality scalar, trees, represented by the stem and leaf pools, are now only affected by fire in case of 

fire-related forest loss. This module follows the methodology described in van Wees et al. (2021) for determining annual 

fire-related forest loss. In short, fire-related forest loss is determined by the probability-based spatiotemporal detection 

overlap of annual Landsat-based 30 m forest loss (Hansen et al., 2013), monthly MODIS 500-m burned area, and MODIS 1-

km (nadir) active fire detections (Giglio et al., 2016, 2018). Van Wees et al. (2021) also included fire detections from the 220 

year before forest loss was mapped in the time series from Hansen et al. (2013) to account for lagged detection of forest 

cover loss from fire that occurred in previous years. For model integration, we have now distributed the annual fire-related 

forest loss across the 24 months considered, based on the fire detection timing. The monthly-distributed fire-related forest 

loss area was normalized for each year to ensure that the annual sum of monthly-distributed values did not exceed the annual 
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total fire-related forest loss area in case of multiple overlapping fire detections within a year. This normalization step was 225 

mostly relevant for the boreal region, where forest loss can be the result of individual fires that burned for multiple months 

within a 500-m grid cell. Given that forest loss was based on aggregated 30-m Landsat values, forest loss area was 

represented as a fraction of each 500-m grid cell. The fractional forest loss area was applied to the portion of the 500-m grid 

cell with tree cover, by dividing forest loss area by the grid cell’s pre-disturbance FTC value. The pre-disturbance FTC value 

was determined as the maximum FTC among the current year and the year preceding disturbance. By dividing by the 230 

maximum FTC of two years, we aimed to minimize possible overestimation due to interannual variability in the FTC dataset. 

In the case a (binary) burned area detection coincided with (fractional) fire-related forest loss within a single 500-m grid cell, 

the fire-related forest loss fraction affected the stem and leaf pools, while the remainder of the grid cell was modelled as fire 

without forest loss. All estimates of fire-related forest loss area and emission in this study are reported with an estimate range 

based on the minimum and maximum-probability fire-related forest loss as calculated in van Wees et al. (2021). This range 235 

was based on the spatial overlap between forest loss and active fire pixels. Here, the estimate range is used as a measure of 

the uncertainty in fire emissions stemming from the fire-related forest loss part. 

 

Forest loss without fire was calculated as the remainder after subtracting fire-related forest loss from total forest loss. Forest 

loss without fire includes disturbance processes such as logging, mechanized forest conversion without fire, insect and 240 

disease outbreaks, and wind storms (Goulden and Bales, 2019; Kurz et al., 2008). This type of forest loss was calculated 

annually, after which 1/12th of the annual value was subtracted from the stem and leaf pools each month. In this way, fire-

related forest loss and forest loss without fire adjusted carbon stocks within the model, allowing the model to better represent 

cases where forest loss is caused by fire and cases where fire follows forest loss (fire after forest degradation due to e.g. 

logging, insect outbreaks). In a sensitivity simulation we accounted for forest loss without fire two years after the fire year. 245 

This resulted in a change of +0.2% in global emissions and of +1.0% in fire-related forest loss emissions, showing that cases 

where fire-related forest loss and forest loss without fire both occur in one model grid cell throughout a single year were of 

minor importance to emissions. 

2.1.3 Fire emissions from belowground pools 

In conditions of low soil moisture, fires can burn into the carbon-rich soils in tropical peatlands and the Arctic-boreal region, 250 

generating substantial carbon emissions (Page et al., 2002; Walker et al., 2020). Modelled belowground fuel consumption of 

soil organic carbon was based on static SOC reference maps instead of dynamic soil pools (see section 2.2). Reference maps 

are used to ensure reliable SOC amounts while avoiding demanding modelling and validation of long-term soil pools and the 

requirement of an extended model spin-up. Fire emissions from the combustion of SOC were only modelled for the boreal 

region and specific tropical peatlands, whereas in other regions the soil was assumed not to be affected by fire. Soils were 255 

modelled to burn both in cases of fire-related forest loss and fire without forest loss. We limited tropical peat fire emissions 

to regions with documented belowground burning, namely the peatlands of Indonesia and Malaysia (Gaveau et al., 2021; 

https://doi.org/10.5194/gmd-2022-132
Preprint. Discussion started: 30 May 2022
c© Author(s) 2022. CC BY 4.0 License.



9 
 

Page et al., 2002), the Pantanal wetland area in Brazil (Leal Filho et al., 2021; Libonati et al., 2020; Marengo et al., 2021), 

and the Paraná delta wetlands in Argentina (Berbery et al., 2008). The tropical peat burn depth, 𝐷opqr_CqABtuv , in centimetres, 

is based on a linear regression function derived from the relationship between field measurements of burn depth (Ballhorn et 260 

al., 2009; Hirano et al., 2014; Konecny et al., 2016; Saharjo and Nurhayati, 2006; Simpson et al., 2016; Stockwell et al., 

2016; Usup et al., 2004) and a soil moisture scalar (Fig. 1): 

 

𝐷opqr_CqABtuv = −43 ∙ 𝜀Yf	^>2^^u6 + 52	,         (8) 

 265 

where 𝜀Yf	^>2^^u6 is the soil moisture scalar analogous to Eq. 7 but for the average volumetric soil water content over the 

ERA5-land model depths of 0–7 cm, 7–28 cm, and 28–100 cm. At minimum moisture conditions, the burn depth reaches a 

maximum of 52 cm, which is the average depth reported for the severe 1997 Indonesian peat fires (Page et al., 2002). For the 

wetlands in South America the burn depth was halved to represent shallower burn depths due to the absence of 

anthropogenic peat drainage as found in Southeast Asia. The amount of burned SOC per 500-m grid cell was calculated by 270 

multiplying the burn depth by a peat carbon bulk density of 54 kg C m–3 (Page et al., 2011) and the fraction of peatland in the 

grid cell. 

 

The boreal soil burn depth, 𝐷opqr_oAqH7x , was based on an empirical linear function: 

 275 

𝐷opqr_oAqH7x = −20 ∙ 𝜀Yf	^>3yu6 + 20	,         (9) 

 

where 𝜀Yf	^>3yu6 is the soil moisture scalar analogous to Eq. 7 but for the average volumetric soil water content over the 

ERA5-land model depths of 0–7 cm and 7–28 cm. This function, with a maximum burn depth of 20 cm, was designed to 

mimic mean field measurements of burn depth and soil carbon emissions. Even though about 8% of field entries in Walker et 280 

al. (2020) represent deeper burning, a maximum depth of 20 cm was chosen for best correspondence with the average SOC 

emissions over all field entries in the boreal region. The volumetric soil water content was adjusted to increase variability in 

areas within the boreal region with consistently high soil moisture such as the Lena river basin. Grid cells with a water 

content that did not dip below 0.35 m3 m–3 over the full period of 2002–2019 were adjusted to range from 0.25 to 0.45 m3 m–

3 based on a linear scaling function (Fig. S1). This adjustment improved belowground combustion compared to 285 

measurements from Veraverbeke et al. (2021) in the Lena river basin and from Walker et al. (2020) in boreal North America. 

The soil organic carbon depth was calculated by dividing the SOC content from the NCSCD dataset by a soil carbon bulk 

density of 35 kg C m–3. This bulk density was determined as the average bulk density over all field records in the combustion 

database from NASA’s Arctic-Boreal Vulnerability Experiment (ABoVE) (Walker et al., 2020). We only modelled boreal 

soil burning for the boreal forest, sparse boreal forest, tundra and wetland biomes, and excluded boreal croplands and 290 
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temperate biomes. This way we excluded belowground emissions from agricultural burning, as these fires typically only 

consume aboveground fuels. Especially in Southern Russia, agricultural burning leads to substantial burned area that would 

otherwise lead to unrealistically high emissions (Hall et al., 2016). The consumed SOC was subtracted from the initial 

NCSCD stocks so that less carbon was available with each repeated burn, until the SOC pool was fully depleted. In contrast, 

for the tropical peatlands the carbon pool was assumed to be unlimited, given that peat depths in Indonesia reach several 295 

meters (Gumbricht et al., 2017). 

 

Roots were modelled to burn only in the case of fire-related forest loss in combination with soil burning and/or commodity-

driven deforestation. In other cases of fire-related forest loss, and in cases of forest loss without fire, roots were modelled to 

die and eventually become soil organic matter. Fires without forest loss were considered to not affect roots. In the case of 300 

soil burning, the root CC was linearly scaled with burn depth to range from 0 to 10%. For commodity-driven deforestation, 

the root CC was linearly scaled with the soil moisture scalar, and boosted to range from 20% to 50% in order to represent 

mechanical tree uprooting followed by repeated burning of the slash (Carvalho et al., 1995; Kauffman et al., 1995). In grid 

cells with both soil burning and commodity-driven deforestation, the latter CC scheme was used, assuming that roots were 

uprooted regardless of soil burning. 305 

2.2 Input datasets 

Model input data primarily consisted of MODIS Collection 6 (C6) satellite observation products with a 500-m spatial 

resolution, combined with coarser reanalysis meteorology data and other additional datasets focused on forest loss and 

region masking (Table 1). All datasets were reprojected to the MODIS sinusoidal 500-m grid for model use, using nearest-

neighbour interpolation for coarser-resolution datasets and average-based interpolation for finer-resolution datasets. For the 310 

calculation of NPP, we used MODIS MCD15A2H fPAR (Myneni et al., 2015) in combination with ERA5-land surface net 

solar radiation and air temperature (2 meters above surface) (Muñoz Sabater, 2019), and evaporative stress from the 

GLEAM v3.5b (Martens et al., 2017; Miralles et al., 2011) to calculate the temperature and water stress scalars. Since 

ERA5-land only contains data for land grid cells, large water bodies were complemented with ERA5 data (non-land) 

(Hersbach et al., 2019) in order to ensure valid data values for coastal grid cells at 500-m resolution. Model NPP was 315 

calibrated using MODIS MOD17A3H annual NPP. For comparison, monthly MODIS-derived NPP was estimated based on 

the MOD17 product algorithm and using MODIS MOD17A2H monthly gross primary productivity (GPP) and net 

photosynthesis (PSNnet) (see S1). Model NPP was distributed over tree and non-tree vegetation classes using the FTC and 

NTV data from the MODIS MOD44B Vegetation Continuous Fields (VCF) product (Dimiceli et al., 2015). Soil moisture 

scalars for the calculation of litter decomposition rates, combustion completeness, and burn depth were based on ERA5-land 320 

volumetric soil water for the model depths 0–7 cm, 7–28 cm, and 28–100 cm (Muñoz Sabater, 2019). Burned area was 

derived from the MODIS MCD64A1 burned area dataset (Giglio et al., 2018). Both burned area and additional fire 

detections from the MODIS MCD14ML active fire product (Giglio et al., 2016) were combined with Landsat 30 m forest 
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loss detections from the Global Forest Change (GFC) product (Hansen et al., 2013) to derive fire-related forest loss at 500 m 

resolution based on the algorithm from van Wees et al. (2021). Active fire detections were only used where they overlapped 325 

with forest loss, using forest loss area as a constraint for burned area. Biome classes were delineated using the MODIS 

MCD12Q1 land cover type product (Friedl and Sulla-Menashe, 2019). Land cover types from the International Geosphere-

Biosphere Programme (IGBP) classification were reclassified to fit model purposes (Table S1; Fig. S2). For the 

classification of biomes over latitudinal zones we used the boreal, temperate and tropical ecozones from the FAO Global 

Ecological Zones 2010 update (FAO, 2012). The subtropics were categorized under the temperate zone. For water masking 330 

we used the MODIS MOD44W land-water mask, defining land as grid cells with at least one land classification over 2000–

2015 (Carroll et al., 2017). For boreal belowground fuel consumption we used the soil organic carbon (SOC) stocks for 0–30 

cm depth from the Northern Circumpolar Soil Carbon Database (NCSCD) with a spatial resolution of 0.012° (Hugelius et 

al., 2013). The domain of this dataset is the northern circumpolar permafrost region, which is roughly delineated by mean 

annual ground temperatures below freezing (Obu et al., 2019). We delineated tropical peatlands using the 236-m binary 335 

peatland layer from the SWAMP Global Wetlands Map (Gumbricht et al., 2017), and aggregated this data to derive 

fractional peat cover at 500-m resolution. Commodity-driven deforestation regions were delineated based on the 

classification of forest loss drivers by Curtis et al. (2018). 

2.3 Model calibration 

2.3.1 Calibration of NPP 340 

Model NPP was calibrated against satellite-based annual NPP from the MOD17A3HGF product (Running and Zhao, 2019b) 

by optimizing the modelled maximum light-use efficiency, 𝜀678, per biome (Table S2). The parameter 𝜀678 was determined 

per biome by minimizing a least squares function, as proposed by Zhu et al. (2006) and used at a global scale by Liu et al. 

(2019). The least squares error, 𝐸, is described by: 

 345 

𝐸(𝑥) = ∑ (𝑚t − 𝑛t ∙ 𝑦)3
~
t�2           (10) 

 

Where 𝑚t  is the reference NPP and 𝑛t  is the product of 𝑆𝑆𝑅, 𝑓𝑃𝐴𝑅, 𝑇2 , 𝑇3 , and 𝑊 multiplied by the function variable 𝑦. 

For each biome, available annual reference NPP values are denoted by 𝑖, with a total number of values 𝑗. Minimization of the 

error term 𝐸 yields the maximum light-use efficiency calibrated for each biome. The comparison was performed for all 350 

global land grid cells at 0.05° resolution. Model NPP was compared to monthly MODIS-derived NPP estimated using 

MODIS annual NPP from the MOD17A3HGF product in combination with MODIS monthly GPP and PSNnet from the 

MOD17A2HGF product (Running and Zhao, 2019a) (See S1 and Fig. S3). 
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2.3.2 Calibration of above- and belowground biomass 

After calibration of model NPP, biome-specific turnover rates of the stem and root biomass pools were calibrated to match 355 

reference above- and belowground biomass for 2010 from Spawn et al. (2020). The dataset from Spawn et al. (2020) 

integrates a large collection of previously published biomass maps to provide harmonized above- and belowground biomass 

maps encompassing all vegetation types. The reference biomass was compared to the average of 2009–2011 model biomass 

to reduce the impact of interannual variability. The optimal turnover rate for each biome was calculated by solving for the 

biomass in-and output equations that hold for the model equilibrium state. The reference aboveground biomass was used as 360 

the equilibrium state for the stem pool, and the reference belowground biomass was used for the root pool. For the stem pool, 

the fraction of NPP that it receives is given by: 

 

𝑠𝑡𝑒𝑚trBpC = 𝑁𝑃𝑃vCH6 = 2
m
𝑁𝑃𝑃 ∙ �e�

�e�G�e�
∙ i
j
         (11) 

 365 

where 𝑠𝑡𝑒𝑚trBpC and 𝑁𝑃𝑃vCH6 are the monthly stem biomass input, 𝑁𝑃𝑃 is the total monthly NPP, and 𝐹𝑇𝐶 and 𝑁𝑇𝑉 are 

the fractions of tree cover and non-tree vegetation cover that distribute NPP over trees and grasses. In CASA, 1/3 of NPP is 

allocated to the stem pool. The factor of 4/5 follows from the relocation of 20% of stem NPP to the roots, as described in 

section 2.1. Ignoring disturbance factors such as fire, the output from the stem pool is only based on the natural turnover rate, 

𝜏vCH6: 370 

 

𝑠𝑡𝑒𝑚ApCBpC = 𝑠𝑡𝑒𝑚 ∙ 𝜏vCH6          (12) 

 

After model spin-up, equilibrium between the stem input and output ensures that: 

 375 

𝜏vCH6 = ����T��
Z��

            (13) 

 

where 𝐴𝐺𝐵 is the reference aboveground biomass from Spawn et al. (2020). The calibrated 𝜏vCH6  for each biome is 

calculated as the median of 𝜏vCH6 over all 500-m grid cells within that biome. For the boreal biomes, calibrated stem 

turnover rates were found to be notably different between North America and Eurasia. Therefore, the stem turnover rates for 380 

these continents were determined separately, avoiding overestimation of aboveground biomass for the North American 

boreal region (see Table S2). This could be related to the difference in fire regime between the continents for the boreal 

region (Rogers et al., 2015), accounted for by different turnover rates. 

 

The root pool NPP input is the sum of the NPP allocated to the roots of trees and the roots of non-tree vegetation, giving: 385 
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𝑟𝑜𝑜𝑡trBpC = 𝑁𝑃𝑃qAAC =
2
m
𝑁𝑃𝑃 ∙ �e�

�e�G�e�
∙ �
j
+ 2

3
𝑁𝑃𝑃 ∙ �e�

�e�G�e�
      (14) 

 

where 𝑟𝑜𝑜𝑡trBpC  and 𝑁𝑃𝑃qAAC  are the monthly root biomass input. The root turnover rate, 𝜏qAAC , was calculated analogous to 

Eq. 13, but substituted with 𝑁𝑃𝑃qAAC  and the reference belowground biomass, 𝐵𝐺𝐵. In CASA, 1/3 of tree NPP and 1/2 of 390 

grass NPP are allocated to the root pool. The factor 6/5 in Eq. 14 follows from the relocation of 20% of stem NPP to the 

roots, as described in section 2.1. 

2.3.3 Calibration of fuel load and consumption 

In the final calibration step, the turnover rates for the remaining aboveground biomass pools (leaf, grass) and the surface 

litter pools (fine litter, CWD) were tuned individually so the modelled fuel loads matched measured pools and total fuel 395 

loads (Table S2). Next, combustion completeness values were tuned so the model matched measured fuel consumption 

values (Table S3). Field measurements of fuel load and consumption were based on the compiled global database by van 

Leeuwen et al. (2014), in combination with a large amount of additional measurements from more recently published 

datasets (see Table 2). A link to the updated data archive can be found in the Data Availability section. These more recent 

datasets include the collection of field measurements from the ABoVE dataset for boreal North America (Walker et al., 400 

2020), a field campaign in Siberia (Veraverbeke et al., 2021) and a field campaign in Botswana and Mozambique (Eames et 

al., 2021; Russell-Smith et al., 2021). Furthermore, the original dataset compiled by van Leeuwen et al. (2014) was 

completely revised by referring back to the source publication of each data entry. In the revision we have resolved several 

data entry errors, improved the precision of plot coordinates, collected measurement data of individual fuel classes where 

available, and used other relevant plot information not yet included in the dataset by van Leeuwen et al. (2014). By 405 

collecting source data on individual fuel classes, we were able to compare modelled to measured fuel load and consumption 

for each individual model pool. In the dataset by van Leeuwen et al. (2014) these data were clustered into plot totals, which 

limited the model comparisons in van Wees and van der Werf (2019) and van der Werf et al. (2017). The precision of the 

reported plot geographic coordinates was increased to four decimals (0.36″) where possible, for more accurate plot 

localization and compatibility with 500-m resolution. Inaccuracies in plot coordinates were solved by selecting a nearby 410 

location based on the plot description in the source publication. For example, plots were slightly relocated in cases where the 

original plot coordinate described a nearby city, or when a model grid cell was previously already burned or deforested 

(depending on the plot’s reported fire history). 

 

Further adjustments were made to fully utilize the available measurement data for model calibration. Entries with a burn date 415 

prior to 2002 were compared to 2002 model estimates. In cases where the month was not specified, the month in the middle 

of the regional fire season was used. For the field data from Walker et al. (2020), only entries with a burn date from 2004 or 

later were included to ensure consistency of the measurement protocol, correct information on which fuel pools were 
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included in each measurement (Xanthe Walker, personal communication), and a measurement date within the model period. 

A selection of entries from Walker et al. (2020) were replaced with values from Dieleman et al. (2020a, b), because fuel 420 

class-specific data were available for the aboveground pools (stem, leaf, fine litter) for these plots. On the contrary, the 

Walker et al. (2020) dataset only reports total aboveground and belowground pools. 

2.4 Simulations 

We ran our 500-m resolution fire emissions model for the 2002–2019 period at a monthly time step. The model required a 

spin-up in order to stabilize carbon pools. In order to reduce required computational resources, the spin-up was divided into a 425 

300-year annual phase to stabilize pools with slow turnover rates (e.g. stems), and a 30-year monthly phase to introduce 

monthly variability. Both phases were based on the 2002–2004 climatology of input data to represent the early period of 

vegetation cover while reducing the influence of interannual variability, except for the biome data and burned area data. For 

the biome data, the majority biome in the 2001–2003 period was used in order to reduce interannual variability, and to 

reduce the influence of land conversion (e.g. deforestation) during the first simulation years. For the burned area data, 430 

different climatologies were used for biomes with a short or long fire return interval. For biomes that burned relatively 

frequently on average, namely shrublands, savannas, grasslands, and croplands, the 2002–2019 climatology was calculated 

per 500 m grid cell. For biomes with a longer fire return interval (generally high tree cover), the burned area during the spin-

up was set to zero and instead the biome-specific turnover rates (Table S2) and tree and non-tree vegetation cover fractions 

implicitly accounted for the fire regime. For these biomes the time-averaged burned area was generally <1% of a 500 m grid 435 

cell, allowing approximation by zero. Setting the burn climatology to zero for these biomes minimized underestimation of 

local biomass before the actual fire event. For the annual spin-up phase, monthly turnover rates were converted to annual 

rates via: 

 

𝜏7rrp7x = 1 − �1 − 𝜏6ArC�x��
23

          (15) 440 

 

Where 𝜏7rrp7x and 𝜏6ArC�x�  are the turnover rates per year and month, respectively. During the spin-up, processes related to 

forest loss and belowground fire were switched off. 

3 Results 

3.1 Model optimization 445 

Average annual model NPP was 57 ± 1 (±1s interannual variability; IAV) Pg C yr–1, compared to 58 ± 2 Pg C yr–1 for 

MODIS and 63 ± 1 Pg C yr–1 for GFED4(s) (from 2002 to 2016). The seasonal pattern was largely in agreement with 

MODIS (Fig. S3). The overall effective light-use efficiency (𝜀H��) for our model was 0.34 g C MJ–1 (Table S2). Optimized 
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stem turnover rates ranged from about 40 years in some low-tree cover biomes up to 80 years for boreal forests and tundra, 

with a global average of 48 years (Table S2). Effective average root turnover rates ranged from 1 year in temperate croplands 450 

to almost 10 years in the boreal tundra. Based on the biome-dependent stem and root turnover rates, the spatial pattern of 

above- and belowground biomass aligned well with the reference data (R2 = 0.91 for stem, R2 = 0.82 for roots) from Spawn 

et al. (2020) (See Fig. 2 for aboveground and Fig. S4 for belowground). As a result, total global aboveground biomass was 

287 Pg C and belowground biomass was 122 Pg C, identical to the values reported by Spawn et al. (2020). The total biomass 

of 409 Pg C is slightly higher than another independent estimate of 380 Pg C reported by Xu et al. (2022). Spatial differences 455 

in aboveground biomass between the model and the reference map were largely the result of the reliance on MODIS-based 

FTC and NTV for the spatial distribution of biomass in the model. For example, tree biomass for the western part of the 

Congo Basin tropical rainforests was underestimated as a consequence of low MODIS FTC in this area (Fig. 2; Fig. S5a). 

For belowground biomass, the largest areas with discrepancies were also found in Africa. For some savannas across Kenya 

and Somalia, the reference belowground biomass density locally was greater than 4000 g C m–2, which was not reproduced 460 

by the model (Figs. S4 and S5b). However, because belowground burning is not occurring in those areas, this has no impact 

on fire emissions. 

 

Biome-averaged fuel load and fuel consumption agreed well with field measurements (Fig. 3) as a result of optimizing the 

turnover rates and combustion completeness per biome and fuel class (Fig. S6). Even though the average and variability 465 

were optimized for each biome and fuel class, the model was not always able to capture the full variability among field 

measurements. Particularly for the data from Walker et al. (2020), the model was often not able to represent individual 

measurements. When omitting the data entries from Walker et al. (2020), the model correlated well with individual field 

measurements of fuel consumption (R2 = 0.72). However, by including the data from Walker et al. (2020) the correlation 

was much lower (R2 = 0.28), likely as a consequence of fine-scale variation in site drainage regulating fuel consumption in 470 

boreal forests that was not resolved at a 500-m spatial resolution (Walker et al., 2020). 

 

The average distribution of biomass over roots, stems and leaves in forest biomes was 28%, 68% and 4%, respectively (Fig. 

4a; Fig. S7a, c). For savanna, shrubland, grassland and cropland biomes combined this was 41%, 51% and 8% on average. 

These ratios were largely in accordance with field-measured distributions as synthesized by Poorter et al. (2012). Fine litter 475 

and CWD each constituted on average 11% of total aboveground (live and dead) plant material for all biomes combined. For 

emissions, the fine litter and CWD pools played a much larger role, representing about half of all aboveground fuel 

consumption for all biomes (Fig. 4b; Fig. S7b, d). In forest biomes the consumption of stems was the following major 

contributor, dependent on the amount of fire-related forest loss, whereas in low-tree cover biomes the consumption of 

grasses played an important role. 480 
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3.2 Fuel consumption and emissions 

Global average carbon emissions from fire for 2002–2019 were 2.1 ± 0.2 Pg C yr–1 (Figs. 5 and 6; Table 3). These emissions 

resulted from 419 ± 41 Mha yr–1 of burned area, of which 413 ± 42 Mha yr–1 originated from the MODIS MCD64A1 

product, and 5.3 ± 1.2 Mha yr–1 (uncertainty range = 2.4–8.2 Mha yr–1) from forest loss area overlapped by active fire 

detections calculated as part of the fire-related forest loss module. Global averaged fuel consumption was 499 g C m–2, of 485 

which almost half originated from the surface litter pools. In the boreal region and the tropical peatlands of Equatorial Asia, 

fuel consumption was dominated by the SOC pool. Notably, fuel consumption in the boreal region transitioned abruptly at 

60°E due to the domain limits of the northern circumpolar permafrost region from the NCSCD dataset, related to a 

temperature transition at the Ural Mountains (Fig. 5b). Emissions were largest in 2015 at 2.4 Pg C yr–1, and smallest in 2018 

with 1.7 Pg C yr–1 (Fig. 6). Of all emissions, 76% originated from the tropics, with 1085 Tg C yr–1 from tropical savannas, 490 

grasslands and shrublands, and 443 Tg C yr–1 from tropical humid and dry forests. The temperate regions accounted for 9% 

of global emissions, with 71 Tg C yr–1 from temperate forests and 56 Tg C yr–1 from temperate grass- and shrublands. 

Finally, the boreal region accounted for 14% of global emissions, or 292 Tg C yr–1, of which 209 Tg C yr–1 (72%) was the 

result of belowground burning of SOC. In comparison, tropical peatlands emitted 67 Tg C yr–1 (3% of global emissions), 

with considerably more annual variability. Only in 2006 were SOC fire emissions from tropical peatlands larger than those 495 

from the boreal region. Cropland emissions from tropical, temperate, and the southern boreal regions were in total 138 Tg C 

yr–1, with most emissions (79 Tg C yr–1) from the tropics, followed by temperate croplands (57 Tg C yr–1). 

 

Fire-related forest loss accounted for 10.6 ± 2.7 Mha yr–1 (uncertainty range = 7.9–13.3 Mha yr–1; 1.9–3.2% of global total) 

of burned area, resulting in emissions of 532 ± 142 Tg C yr–1 (uncertainty range = 382–664 Tg C yr–1; 18–32% of global 500 

total) (Fig. S8). This illustrates how fuel consumption rates are more than a factor of 10 higher on average in the case of fire-

related forest loss (5009 g C m–2 burned) as compared to fire without forest loss (382 g C m–2 burned). The IAV in emissions 

from fire-related forest loss was 142 Tg C yr–1, and thus a dominant contributor (78%) of the interannual variability in global 

emissions. On a regional scale, the contribution of fire-related forest loss to total fire emissions varied widely, from close to 

0% in most savannas to 100% in some forested areas (Fig. S9). The latter situation primarily occurred in closed-canopy 505 

forests with relatively small-scale fires, such as the interior tropical rainforests and temperate forests with minor fire activity. 

In these cases, fire-related forest loss was often only captured by MODIS active fire detections, and not in the MCD64A1 

burned area product (Fig. S9c) (van Wees et al., 2021). 

 

Emissions from the burning of SOC were considerable, accounting for 284 ± 97 Tg C yr–1 (14 ± 5% of global total). Both for 510 

the boreal region and equatorial Asia these emissions represented the majority of total emissions (Fig. 7). For the boreal 

region, SOC fire emissions accounted for between 66% and 79% of total annual emissions, a fraction that was relatively 
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stable over years. In contrast, the relative share of peat fires to total emissions for equatorial Asia varied substantially from 

year to year, with a minimum of 17% in 2008 and a maximum of 76% in 2019. 

4 Discussion 515 

We have produced global fire emissions estimates based on fuel load modelling at an unprecedented spatial resolution of 500 

m. Our approach was based on the modelling framework that was built for a case study for sub-Saharan Africa (van Wees 

and van der Werf, 2019) and has been expanded to global extent with, among other refinements, an updated calibration 

procedure, a fire-related forest loss module, and parameterizations for SOC emissions. While the framework for modelling 

NPP and the turnover rates of fuel pools remained similar, the calibration of most of the underlying parameters has been 520 

automated and further extended to be biome-specific to ensure optimized model performance. Combustion completeness 

ranges have also been changed to be biome-specific, considerably improving the representation of fuel consumption as 

compared to field measurements (Table S3; Fig. 3). With a global extent at 500-m resolution, the model required additional 

model complexity to represent all biomes and fire types. This included representing deforestation mechanisms in the 

Amazon, peat fires in Indonesia, and belowground fuel consumption in boreal forests. 525 

4.1 Comparison to field measurements 

Modelled fuel load and consumption were calibrated to match individual field-measured pools to constrain the amount of 

fuel stored and emitted per pool. Van Wees and van der Werf (2019) showed that the comparison of field plots to 500-m 

model grid cells reduced the representation error as compared to calibration at 0.25° resolution in GFED4(s). In general, the 

model performed well in reproducing measured averages and variability for individual biomes and pools (Fig. 3; Fig. S6). 530 

Nonetheless, model variability was generally lower and discrepancies for individual measurements could still be large. 

However, this is not surprising considering that many of the specific field conditions reported in field studies were not 

explicitly part of the modelling framework. The impacts of different field conditions are often among the main focal points 

of field studies (e.g. Cianciaruso et al., 2010; Walker et al., 2020), influencing fuel conditions and fire behaviour. This 

includes, for example, the time since last burn, local fallow and/or grazing conditions, forest management approaches, site 535 

drainage conditions, and vegetation species composition, all of which may influence fine-scale variability in fuel 

consumption and fire severity. Furthermore, for some of the field data entries the exact measurement location or time was 

unknown and/or the measurement was conducted before the start of the model period in 2002. Optimal direct comparison 

between field data and models would require 20–30 m satellite data and models, as ultimately 500 m resolution is still too 

coarse to represent the sub-500 m heterogeneity found among field plots. This was well-illustrated in the North American 540 

boreal region, for which the large number of available measurements demonstrate the large variability in fuel loads and 

consumption among field plots. Nonetheless, even models specific to boreal North America that partially or fully 

incorporated 30 m-resolution predictors of fuel load and consumption still underrepresented the heterogeneity among fuel 
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consumption as observed by field measurements (Dieleman et al., 2020b; Veraverbeke et al., 2015; Walker et al., 2018). 

This shows that besides including the best-available spatiotemporal predictors, additional vegetation and combustion process 545 

simulation may be required for improved estimates. Additional field measurements in the tropical and temperate regions 

might reveal that such added model refinement is also required for other biomes. Even though available biomass and litter 

pools are constrained with biome averages, additional representation of spatial variability in combustion completeness is 

required for both aboveground and belowground fuel classes. 

 550 

Since the release of the field measurement synthesis by van Leeuwen et al. (2014), a substantial number of new field 

observations have become available, increasing the number of field data entries to a total of 1321 (Table 2). Most new field 

data became available for the boreal region as a result of a synthesis effort sponsored by NASA’s ABoVE campaign for 

boreal North America (Dieleman et al., 2020a, b; Walker et al., 2020) and additional field campaigns in Siberia (Kukavskaya 

et al., 2017; Veraverbeke et al., 2021). Furthermore, recent field campaigns in Africa have roughly doubled the available 555 

measurements for the savanna biomes (Eames et al., 2021; Russell-Smith et al., 2021). The additional field data better 

constrain fuel consumption globally. For the boreal region this reframes the consensus on the amount of belowground 

consumption of SOC in boreal fires. Boreal forest fire emissions were considerably higher than in GFED4s, mainly due to 

higher fuel consumption of soils as revealed by the recent measurements from Walker et al. (2020) (Fig. 8; Fig. S10). With 

climate change, the combination of increased fire activity and permafrost degradation could further increase the share of the 560 

boreal region in global fire emissions (Veraverbeke et al., 2021). 

 

By revising the available field data, we were able to compare individual fuel pools at a global scale, allowing improved 

constraints of fuel load and consumption for each model pool. The model results show that about half of global emissions 

originate from the fine litter and CWD pools, stressing the importance of representing these pools correctly. At the same 565 

time, fine litter and CWD fuel loads are probably the most difficult to estimate on a global scale due to the difficulty in using 

satellite remote sensing to measure these fuels on the ground and below the canopy. Recent developments in the estimation 

of aboveground biomass using emergent technologies such as LiDAR are an important prerequisite for improved fuel models 

(Duncanson et al., 2022), but better constraints on litter pools may require yet different approaches, such as local-scale 

multispectral drone observations (Eames et al., 2021). Until those difficulties are resolved, field data on pool-specific fuel 570 

loads and consumption will continue to be vital for informing models such as ours. 

4.2 Comparison to GFED4(s) 

Our estimate of global fire emissions of 2.1 ± 0.2 Pg C yr–1 is higher than the 1.5 ± 0.2 Pg C yr–1 for GFED4 but similar to 

2.1 ± 0.2 Pg C yr–1 for GFED4s (Fig. 8; Figs. S10 and S11). Differences between the model estimates can be attributed to 

differences in both the amount of burned area and the modelled fuel consumption and emissions at finer spatial resolution 575 

(Fig. 9). GFED4 burned area was based on the MODIS MCD64A1 Collection 5.1 product, which mapped less global burned 
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area than the Collection 6 product used in our study. For the 2002–2016 time period, Collection 6 burned area was 26% 

higher than Collection 5.1, with increases in most regions (Giglio et al., 2018). With the inclusion of small-fire burned area 

in GFED4s, 37% additional burned area was added to Collection 5.1, resulting in 11% more global total burned area than 

Collection 6. By including fire-related forest loss based on active fire detections in our model, we added an additional 3% to 580 

Collection 6 burned area, with a strong bias towards high-fuel consumption fires. As a result, the burned area in our model 

(428 Mha yr–1) was 8% lower than GFED4s (462 Mha–1) for the 2002–2016 period, while global emissions from our model 

and GFED4s differed by only 1% (Table 3). 

 

Other factors that explain the difference in emissions between our 500-m model and GFED4(s) can be summarized by 585 

differences in modelled fuel consumption, which follow from differences in the modelling framework, better-constrained 

model calibration due to additional field data, and more fundamental differences following from the higher spatial resolution 

of our model. Global average fuel consumption for our model was 499 g C m–2, which is 11% higher than the 449 g C m–2 in 

GFED4s and counteracted the 8% lower burned area. The higher fuel consumption could mainly be attributed to more 

combustion of SOC in the boreal region. This increase primarily originates from algorithm changes regarding belowground 590 

fuel consumption, based on improved measurements. Notably, in regions with little burned area (e.g. Middle East, Europe), 

fuel consumption was also considerably higher as a result of more resolved fuel consumption heterogeneity at 500-m 

resolution. As described by van Wees and van der Werf (2019), the higher model resolution of 500 m also plays an 

important role by 1) reducing the representation error between model grid cells versus field-measured data, which in turn 

impacts model calibration, 2) removing the non-linear propagation of aggregated input datasets, 3) reducing biome 595 

misclassification (edge effects whereby multiple biomes within a grid cell are given only one value), and 4) improving fuel-

tracking in case of repeated burns. In combination with differences in the modelling framework and additional field data for 

calibration, this mainly resulted in higher fuel consumption in the interior tropical forests and boreal forests, and lower 

emissions towards the edges of these forest biomes, as compared to GFED4s (Fig. S11). Higher fuel consumption for the 

500-m model in the interior tropical forest, but also some temperate forests such as in the southeastern USA, is largely 600 

explained by the additional burned area from fire-related forest loss based on active fire detections in regions with fires too 

small to be detected by the MODIS 500 m algorithm. Other positive and negative differences between models can mainly be 

explained by a combination of differences in the model calibration per biome and increased spatial variability in fuels at 

finer resolution. 

4.3 Fire-related forest loss 605 

Here we estimated fire-related forest loss emissions of 0.53 ± 0.14 Pg C yr–1 (uncertainty range = 0.38–0.66 Pg C yr–1). By 

combining the 30-m annual forest loss data with monthly 500 m fire data, fire-related forest loss emissions could be 

distributed over months at 500-m resolution. The benefits of satellite-derived information on the spatial extent of forest loss 
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and the timing of fire activity allowed for a more constrained emissions estimate compared to the previously used mortality 

scalar in GFED. Despite these benefits, there are several caveats to this approach. 610 

 

First, the underlying forest loss time series is inconsistent over time, inhibiting trend analysis (Hansen et al., 2013; van Wees 

et al., 2021). The forest loss detection algorithm developed by Hansen et al. (2013) was different for the 2001–2012, 2013–

2014, and 2015–present time periods due to the introduction of Landsat-8 OLI images from 2013 onwards and changes in 

the detection algorithm. These changes led to improved detection efficiency and an artificial increasing trend in the forest 615 

loss time series. Therefore, the increase in fire-related forest loss emissions as shown in Fig. 8a should be interpreted with 

caution. We did not find any significant trends in fire-related forest loss emissions for the individual 2001–2012, 2013–2014 

and 2015–present periods. We did find a significant negative trend in fire emissions unrelated to forest loss of –0.02 Pg C yr–

2 (p<0.01) for 2002–2019 and a trend of –0.03 Pg C yr–2 (p=0.02) for 2002–2012, in line with an observed decline in global 

burned area (Andela et al., 2017). This decline is counteracted by the increase in fire-related forest loss emissions, which 620 

disproportionally affects global total emissions due to the relatively high fuel consumption of fires related to forest loss. 

Despite these limitations, high global fire emissions in the years 2012, 2015 and 2019 can still largely be explained by high 

fire-related forest loss (Fig. 8a). Another approach is required to disentangle emission trends resulting from the decline in 

global burned area and an opposing increase in forest fire emissions (Zheng et al., 2021). 

 625 

A second caveat to the fire-related forest loss module follows from the discrepancy in burned area from the fire-related forest 

loss algorithm as compared to MCD64A1 Collection 6. Originating from the 30-m forest loss data, the fire-related forest loss 

area is a fraction of a 500-m grid cell, whereas the MCD64A1 burned area is binary at 500 m. Therefore, the burned area and 

emissions from these two sources should be compared with caution. Because of its finer source resolution, we expect the 

fire-related forest loss area to be more accurate than MCD64A1 for fires related to forest loss, while the 500-m product is 630 

more likely to suffer from omission errors due to missed detections and to a lesser extent from commission errors due to 

binary 500-m resolution. For most biomes the discrepancy between 500-m and 30-m burned area has a negligible effect on 

emissions because the fuel consumption from fire-related forest loss is a magnitude higher than fire types without forest loss. 

However, in the case of belowground burning in the boreal region and tropical peatlands, emissions from fire-related forest 

loss and belowground burning are of the same magnitude and their ratios could therefore be biased. In 500-m grid cells 635 

where burned area detections coincide with fire-related forest loss, only a fraction of the grid cell is affected by fire-related 

forest loss while belowground burning affects the entire grid cell. In boreal North America, for example, where the majority 

of fires are stand-replacing, emissions from belowground burning without forest loss might therefore be relatively 

overrepresented due to the binary 500-m burned area data, whereas emissions with forest loss are based on fractional fire-

related forest loss area (Fig. 7). Burned area data with a resolution of 30 m would be required to match the resolution of the 640 

forest loss data and overcome these discrepancies. 
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4.4 Estimating emissions from higher-resolution burned area 

Given the emission differences between our model and GFED4(s) described in section 4.2, we expect a more substantial 

change in emission estimates with the use of sub-500 m resolution burned area datasets, e.g. based on 30-m Landsat or 20-m 

Sentinel-2 data. These products detect substantial amounts of additional burned area, primarily from fires that are too small 645 

to be detected by the coarser MODIS sensors (Randerson et al., 2012). Ramo et al. (2021) for example found 80% more 

burned area for sub-Saharan Africa in 2016 based on Sentinel-2 images compared to the MODIS-derived MCD64A1 C6 

product, due to the improved detection of small fires. In combination with the 500-m emissions model described by van 

Wees and van der Werf (2019), they found a doubling of fire emissions based on Sentinel-2 burned area as compared to 

MODIS burned area. Other Landsat and Sentinel-2-based burned area products report similar findings, with substantial 650 

increases in detected burned area as compared to the MODIS product for e.g. Indonesia for the year 2019 (+50% additional 

burned area) (Gaveau et al., 2021), Alaska for 2000–2015 (+53%) (Moreno-Ruiz et al., 2019), the conterminous USA for 

2003–2018 (+56%) (Hawbaker et al., 2020), a study region in southern Africa for July 2016 (+73%) (Roy et al., 2019), and 

the Russian 2020 spring fire season (+500%) (Glushkov et al., 2021). To a lesser extent, sub-500 m burned area products 

may give lower burned area and emissions in regions with many large fires, because of better accounting for landscape 655 

heterogeneity, for example in regions with many small water bodies such as the Canadian Shield (Walker et al., 2018). 

 

On a global scale, the increased detection of small fires is expected to result in a substantial increase in emissions when 

integrating the 20 m and 30 m burned area data into our model. The exact magnitude of increase in emissions will depend on 

the spatial and temporal distribution of the burned area, while locally emissions might be lower due to reduced commission 660 

errors. Ramo et al. (2021) found that the additional burned area from the Sentinel-2 MSI sensor for Africa due to small fires 

was relatively most important in the onset and ending of the fire season, effectively lengthening the fire season. This is 

crucial information when converting carbon emissions to emissions of trace gases and aerosols using time-dependent 

emission factors (Vernooij et al., 2021). From the comparison of our 500-m model to GFED4(s) we can conclude that the 

globally averaged fuel consumption from our model is only slightly higher, and that the additional burned area from 30- and 665 

20-m satellite sensors is more likely to lead to a truly substantial difference in emissions. With our 500-m model we provide 

a framework in line with the prevailing developments towards higher-resolution products, with the potential to further 

improve local- and global-scale fire emission estimates including use for a forthcoming GFED5 release. 

Code and data availability 

Model code is available on request. Emissions and burned area from the 500-m model and GFED4s, and the updated field 670 

measurement database are available at https://www.globalfiredata.org/. (last access: 12 May 2022). 
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Table 1: Overview of datasets used as input for the global model. 

Variable Acronym Product Spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 

Reference 

Fraction of 

photosynthetically 

active radiation 

fPAR MCD15A2H 500 m 8-daily 2002–

present 

Myneni et al. (2015) 

Gross primary 

production, net 

photosynthesis 

GPP, 

PSNnet 

MOD17A2H 500 m 8-daily 2001–

present 

Running and Zhao (2019a) 

Net primary production NPP MOD17A3H 500 m Annual 2001–

present 

Running and Zhao (2019b) 

Fraction tree cover, 

non-tree vegetation 

FTC, NTV MOD44B 250 m Annual 2000–

present 

Dimiceli et al. (2015) 

Land-water mask - MOD44W 250 m Annual 2000–2015 Carroll et al. (2017) 

Land cover types Biomes MCD12Q1 500 m Annual 2001–2020 Friedl and Sulla-Menashe 

(2019) 

Burned area BA MCD64A1 500 m Monthly 2000–

present 

Giglio et al. (2018) 

Active fires - MCD14ML 1 km Daily 2000–

present 

Giglio et al. (2016) 

Forest loss - GFC 30 m Annual 2001–2020 Hansen et al. (2013) 

Aboveground and 

belowground biomass 

AGB, BGB Harmonized 

global biomass 

300 m - 2010 Spawn et al. (2020) 

Surface net solar 

radiation 

SSR ERA5-land 0.10° Monthly 1950–

present 

Muñoz Sabater (2019) 

2 m air temperature T ERA5-land 0.10° Monthly 1950–

present 

Muñoz Sabater (2019) 

Volumetric soil water SM ERA5-land 0.10° Monthly 1950–

present 

Muñoz Sabater (2019) 

Evaporative stress S GLEAM v3.5b 0.25° Monthly 2003–2020 Martens et al. (2017); 

Miralles et al. (2011) 

Soil organic carbon 0–

30 cm 

SOC 0–30 

cm 

NCSCD 0.05° - - Hugelius et al. (2013) 

Peat cover - SWAMP 

Global 

Wetlands 

236 m - - Gumbricht et al. (2017) 
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Ecozones - FAO GEZ2010 1 km - - FAO (2012) 

Commodity-driven 

deforestation 

- Forest loss 

drivers 

10 km - 2001–2019 Curtis et al. (2018) 
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Table 2: Overview of reference data for field measurements of fuel load and fuel consumption. Each measurement count 
represents a data entry of fuel load and/or fuel consumption for a measurement-specific set of fuel classes. 1030 

Reference Region Measurement time 

span 

# of measurements 

Van Leeuwen et al. (2014) Global 1972–2011 306 

Walker et al. (2020) Boreal North America 1983–2016 791 

Dieleman et al. (2020a, b) Saskatchewan 2015 78 

Veraverbeke et al. (2021) Siberia 2019 41 

Eames et al. (2021); Russell-Smith et 

al. (2021) 

Botswana and 

Mozambique 

2019 73 

Kukavskaya et al. (2017) Siberia 2014 1 

Carvalho Jr. et al. (2016) Brazil 2010–2014 3 

Cianciaruso et al. (2010) Brazil 2006 1 

Clark et al. (2015) USA 2008 1 

Girardin et al. (2010) Peru 2005 9 

Ivanova et al. (2019) Siberia 2002–2003 3 

Mueller et al. (2017) USA 2013–2014 2 

Nijmeijer et al. (2019) Cameroon 2015 2 

Ottmar et al. (2016) USA 2011–2012 2 

Russell-Smith et al. (2014) Australia 2012 1 

Schmidt et al. (2017) Brazil 2009–2010 3 

Sparks et al. (2017) USA 2014 1 

Thomas et al. (2017) USA 2016 1 

Turcios et al. (2016) Brazil 2014 1 

Virkkula et al. (2014) Finland 2009 1 

Total Global 1972–2019 1321 
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Table 3: 2002–2019 average fuel load, fuel consumption and emissions per GFED region. Fuel load and fuel consumption are 
reported in fuel groups of aboveground biomass (AGB; stem, leaf and grass model pools), surface litter (fine litter and CWD 
model pools), belowground biomass (BGB; roots model pool), and soil organic carbon (SOC). Fuel consumption and emissions 1035 
from GFED4s are reported for comparison. Field averages are based on the average fuel consumption over the field measurement 
entries located within a GFED region. The number of field plots involved in each field average is given in parenthesis. 

 Fuel load 

(g C m–2) 

Fuel consumption 

(g C m–2 burned) 

Burned area (Mha) 

 

Emissions 

(Tg C yr–1) 

Region AGB Litter BGB 

(root) 

SOC† 

(0–30 

cm) 

AGB Litter BGB 

(root) 

SOC

† 

Total GFED4s Field 

average 

(# of plots) 

Total 

(2002–

2019) 

Total 

(2002–

2016) 

GFED4s‡ 

(2002–

2016)§ 

Total GFED4s‡ 

BONA 1398 506  794  5264 591 480 21 2336 3427 2505 3079 (924) 2.9 2.9 3.0 98 74 

TENA 2042 594 896 20 532 365 2 0 899 720 1132 (49) 3.1 3.0 3.0 28 21 

CEAM 2746 781 1118 0 434 580 9 0 1023 994 1867 (15) 2.9 2.9 3.1 30 31 

NHSA 7059 1360 2034 0 205 176 6 0 387 593 365 (8) 5.4 5.4 5.2 21 31 

SHSA 4581 987 1505 9 486 401 35 35 957 1066 4734 (47) 30.4 31.0 26.1 291 278 

EURO 1508 475 653 649 343 433 0 2 778 569 1038 (2) 1.0 1.0 1.2 8 7 

MIDE 100 61 81 0 143 218 0 0 361 141 - (0) 1.5 1.4 1.4 5 2 

NHAF 1382 333 711 0 144 148 0 0 292 274 208 (6) 126 130 150 366 411 

SHAF 2380 600 1248 0 150 251 0 0 401 388 211 (146) 151 154 172 607 666 

BOAS 1864 533 1059 8969 270 380 12 1362 2025 1403 2818 (48) 10.4 10.5 9.4 210 132 

CEAS 1022 306 483 314 101 209 0 13 323 261 146 (5) 19.4 20.0 22.3 63 58 

SEAS 2095 555 752 1 307 386 11 0 703 733 270 (4) 14.7 14.7 15.3 103 112 

EQAS 6126 1275 1664 1011 1549 738 143 3023 5454 5840 7410 (15) 2.0 2.2 2.3 112 134 

AUST 863 330 646 0 121 191 0 0 312 244 536 (52) 47.9 48.2 48.0 149 117 

Global 2031 525 866 1572 191 236 4 68 499 449 2692 (1321) 419 428 462 2091 2074 

 
† Soil organic carbon (SOC) fuel load and fuel consumption values are only considered for the boreal region and tropical peatlands in Indonesia, Malaysia, and the Pantanal and 

Parana delta in South America, delineated by the static boreal SOC map from the NCSCD database (Hugelius et al., 2013) and tropical peatland layer from the  SWAMP Global 1040 
Wetlands Map (Gumbricht et al., 2017). SOC is non-zero for TENA and CEAS because definitions of the southern border of the boreal region differ between Hugelius et al. 

(2013) and the GFED regions from van der Werf et al. (2017). Tropical peatland SOC fuel loads are given for 0–30 cm depth for consistency with the boreal SOC stocks, and 

based on a constant carbon density of 54 kg C m–3. 

‡ GFED4s emissions cannot be directly compared to the 500-m model estimates, as they are based on different amounts of burned area (see Section 4.2). 

§ GFED4s burned area is only available up to 2016 due to dependency on MCD64A1 Collection 5.1 burned area which was discontinued after 2016. GFED4s emissions for 2017–1045 
2019 are released as a Beta product and based on a parameterization using MODIS active fires from the MCD14 product (Giglio et al., 2016). For comparison, we also give the 

burned area from the 500-m model for the 2002–2016 period. 

 
  

https://doi.org/10.5194/gmd-2022-132
Preprint. Discussion started: 30 May 2022
c© Author(s) 2022. CC BY 4.0 License.



36 
 

 1050 

Figure 1: Parameterization of burn depth in tropical peat lands (𝑫𝒃𝒖𝒓𝒏_𝒕𝒓𝒐𝒑𝒊𝒄𝒔) as a function of the soil moisture scalar. The 
tropical peat burn depth was based on a linear regression function derived from the relationship between field measurements of 
burn depth and the soil moisture scalar. The soil moisture scalar was based on the average volumetric soil water content over the 
ERA5-land model depths of 0–7 cm, 7–28 cm, and 28–100 cm (Muñoz Sabater, 2019). 

  1055 

https://doi.org/10.5194/gmd-2022-132
Preprint. Discussion started: 30 May 2022
c© Author(s) 2022. CC BY 4.0 License.



37 
 

(a) 

 
(b) 

 
Figure 2: (a) Modelled aboveground biomass (AGB) averaged over 2002–2019, (b) comparison of modelled versus reference 1060 
aboveground biomass at an aggregated 0.25° grid cell level. Model AGB comprises the stem, leaf and grass model pools and does 
not include litter pools. Panel (a) is aggregated to 0.25° for display. 
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Figure 3: Comparison of field measurements of (a) fuel load, (b) combustion completeness and (c) consumption versus model 
estimates for all field data (Table 2), grouped per biome class. The number of measurement records included is given above each 1065 
boxplot. Aboveground and belowground fuel classes are grouped separately. Belowground fuel classes (Tropical peat, boreal soil) 
are only reported for fuel consumption measurements because our model relied on static SOC density maps for calculating soil fire 
emissions (See Methods). Global values are for the total measured fuel available, which in case of (a) and (b) are aboveground 
values, and for (c) is the sum of above- and belowground for each measurement record. Note that the number of fuel consumption 
measurements for the individual biomes does not sum to the global total number of sites (1321) because measurement records with 1070 
both aboveground and belowground values are being counted as one record in the Global class. The y-axis of panel (a) and (c) are 
logarithmic and the y-axis of panel (b) is linear. Boxplot whiskers give the range of data. 
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Figure 4: 2002–2019 average (a) fuel load and (b) fuel consumption per biome. Bars are subdivided in model biomass and litter 1075 
pools. Because of the use of static SOC maps, panel a does not include soil organic carbon fuel loads. 
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(a) 

 
(b) 1080 

 
(c) 

 
Figure 5: Global annual (a) burned area, (b) fuel consumption, and (c) emissions, averaged over 2002–2019. Burned area displayed 
in panel a is the total burned area derived from combining the MODIS MCD64A1 product and additional fire-related forest loss 1085 
burned area from active fire detections that overlap forest loss. Maps are aggregated to 0.25° for display.  
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Figure 6: Global annual emissions for 2002–2019 based on the 500-m model. Bars are subdivided into biomes, with belowground 
emissions in two separate classes (Tropical peat, boreal soil). 1090 
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Figure 7: Annual 2002–2019 emissions for the global total, global fire-related forest loss, and the 14 GFED regions. Bars are 
subdivided in aboveground and belowground emissions, and in fire without forest loss and with forest loss (i.e. fire-related forest 
loss).   1095 
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(a) 

 
(b) 

 
Figure 8: Annual global emissions for the 500-m model for 2002–2019 versus GFED4s for the same time period and GFED4 for 1100 
2002–2016 as (a) time series and (b) latitudinal total emissions. Contributions to 500-m model emissions from fire-related forest 
loss (FLf) and SOC burning are displayed separately. Note that these sub-categories partly overlap: fire-related forest loss 
emissions include part of SOC burning emissions and vice versa. Transparent bands around estimates show the range between 
minimum- and maximum-probability fire-related forest loss. All lines are based on 0.25° aggregated data and smoothed using a 
moving-average filter with a window size of 4 grid cells, i.e. 1° latitude.  1105 
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(a) 

 
(b) 

 
  1110 

https://doi.org/10.5194/gmd-2022-132
Preprint. Discussion started: 30 May 2022
c© Author(s) 2022. CC BY 4.0 License.



45 
 

(c) 

 
(d) 
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(e) 

 
Figure 9: Regional maps of annual emissions from the 500-m model (left panel) and GFED4s (right panel; with a model resolution 
of 0.25°). (a) Deforestation in the south-eastern part of the Brazilian Amazon and the transition to savanna fires in the Brazilian 
Cerrado for 2004. (b) Deforestation on Borneo for 2006, including fires in drained peatlands (primarily on the southern coast). (c) 1120 
Savanna fires and deforestation in the south-eastern part of the Congo Basin for 2016. (d) Boreal wildfires north and east of Lake 
Baikal in Siberia for 2017. (e) Temperate wildfires on the West Coast of the United States for 2018. Greyscales show fractional tree 
cover. 
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